Разработка торговой стратегии криптовалют для определения точек входа и выхода из торговых позиций на основе алгоритмов машинного обучения
Аннотация
Объектом настоящего исследования являются алгоритмы и методы машинного обучения, и их применение в задачах прогнозирования временных рядов и анализа текста.
В данном исследовании предложено применить модифицированную архитектуру рекуррентной нейронной сети (LSTM) для предсказания цены закрытия криптовалютных котировок на следующий день от текущего, а также, применить алгоритмы классификации, такие как: логистическая регрессия, Linear SVC, Gradient Boosting, для определения эмоциональной метки новостной записи для разработки стратегии прогнозирования точек входа и выхода из торговых позиций на рынке криптовалют.
Исследование фокусируется на доказательстве того, что применение методов и алгоритмов машинного обучения для создания торговой стратегии для определения точек входа и выхода из торговой позиции, повысит эффективность процесса торговли, а также, ускорит процесс сбора и обработки аналитических данных для технического анализа рынка.
Для обучения используемых моделей, разработаны и использованы программные средства (парсеры), с помощью которых извлекаются данные с криптовалютной торговой биржи Binance, а также, криптовалютной социальной сети CryptoPanic.
Экспериментальные результаты показывают, что среднем автоматизированный процесс определения точек входа и выхода из торговых позиций быстрее в 2 раза чем при ручном определении, а количество сделок увеличится примерно на 17.5%. В итоге можно сделать вывод о том, что, используя передовые технологии возможно разработать инструмент для повышения эффективности торговли криптовалютой.
В данном исследовании предложено применить модифицированную архитектуру рекуррентной нейронной сети (LSTM) для предсказания цены закрытия криптовалютных котировок на следующий день от текущего, а также, применить алгоритмы классификации, такие как: логистическая регрессия, Linear SVC, Gradient Boosting, для определения эмоциональной метки новостной записи для разработки стратегии прогнозирования точек входа и выхода из торговых позиций на рынке криптовалют.
Исследование фокусируется на доказательстве того, что применение методов и алгоритмов машинного обучения для создания торговой стратегии для определения точек входа и выхода из торговой позиции, повысит эффективность процесса торговли, а также, ускорит процесс сбора и обработки аналитических данных для технического анализа рынка.
Для обучения используемых моделей, разработаны и использованы программные средства (парсеры), с помощью которых извлекаются данные с криптовалютной торговой биржи Binance, а также, криптовалютной социальной сети CryptoPanic.
Экспериментальные результаты показывают, что среднем автоматизированный процесс определения точек входа и выхода из торговых позиций быстрее в 2 раза чем при ручном определении, а количество сделок увеличится примерно на 17.5%. В итоге можно сделать вывод о том, что, используя передовые технологии возможно разработать инструмент для повышения эффективности торговли криптовалютой.