Разработка системы для оценки успеваемости студентов на образовательных онлайн курсах с использованием методов машинного обучения

Соломеин Александр Сергеевич

Аннотация


Объектом исследования является методы машинного обучения применяемые для оценки успеваемости студентов на онлайн курсах.
Целью выпускной квалификационной работы является разработка инструмента, который использует методы машинного обучения для оценки успеваемости студентов на образовательных онлайн курсах.
Методы или методология проведения работы: аналитическое исследование, программная реализация.
Предметом работы является определение основных концепций в оценке успеваемости обучающихся на онлайн курсах
В данной работе представлена разработка системы на основе машинного обучения для оценки успеваемости студентов на онлайн-курсах. Основная цель — создать эффективный, масштабируемый и надежный инструмент, который автоматизирует процесс прогнозирования успеваемости и предоставляет полезную информацию для студентов, преподавателей и образовательной платформы. Исследование включает в себя комплексный анализ предметной области, анализ задач, обучение модели и экономическую оценку.
Ключевой вклад включает анализ и внедрение модели машинного обучения на основе CATboost, которая достигла высоких показателей производительности с показателем ROC-AUC 0,88 и сбалансированной точностью 0,78. В исследовании также подробно описан процесс подготовки данных, настройка гиперпараметров модели и интеграция системы с существующими системами управления обучением (LMS).
Анализ экономической эффективности и эффективности продукта демонстрирует значительные долгосрочные преимущества, подчеркивая высокую отдачу от инвестиций и повышение операционной эффективности. Система положительно влияет на различные заинтересованные стороны, обеспечивая своевременную обратную связь и персонализированную поддержку для студентов, снижая административную нагрузку на преподавателей, а также повышая репутацию и доходы учреждения.
В целом, эта работа подчеркивает потенциал машинного обучения в прогнозировании успеваемости студентов, улучшении результатов обучения и создании более эффективной образовательной среды. Разработанная система представляет собой ценный инструмент для образовательных учреждений, стремящихся расширить свои предложения онлайн-обучения и улучшить поддержку своих студентов и сотрудников.