Моделирование и выявление предельных циклов в проективной геометрии методами кластерного анализа

Гуторов Евгений Алексеевич

Аннотация


Аннотация
Было спроектировано приложение на языке Python для ортогонального проецирования на наиболее удаленную сторону треугольника и дальнейшей обработки получаемых данных с использованием алгоритмов кластерного анализа. Рассмотрены методы кластерного анализа с известным и неизвестным количеством центроидов. Были программно подтверждены теоретические результаты для треугольных предельных циклов, ранее полученные в статье Трофимова С.П. и Селивановой И.А. “Предельные циклы проектирования на наиболее удаленную сторону треугольника”. Получены изображения в плоскости Oαγ с разделением на зоны кратности предельных циклов. Выдвинуто предположение о структуре граничной области между зонами предельных циклов разной кратности.
Ключевые слова: кластерный анализ, алгоритм кластеризации, предельный цикл, циклическое ортогональное проектирование.
Abstract
Was designed a Python application for orthogonal projection for the farthest side of the triangle and further data processing using cluster analysis algorithms. Considered cluster analysis methods with known and unknown number of centroids. Were confirmed by software theoretical results for triangular limit cycles, previously obtained in the article “Limit cycles of projection to the most remote side of the triangle” by Trofimov S.P. and Selivanova I.A. Were obtained images in the Oαγ plane with division into zones of limit cycle multiplicity. Has been made a hypothesis about boundary area structure between zones of limit cycles with different multiplicities.
Key words: cluster analysis, clustering algorithm, limit cycle, cyclic orthogonal projection.